
1. Depletion region 

The right stratagy to find the width of the depletion region is to ask oneself what one can know 

about a pn-junction. There is the band structure of the used materials which gives the potential 

drop across the depletion region. Another quantity which is known is the doping concentration. 

As a conclusion one can say, that it is needed to find a relation between the potential (voltage) 

and the doping concentrations. The voltage is defined as: 

𝑉(𝑥) = −∫𝐸(𝑥)𝑑𝑥 

The respective 𝐸-field is defined by Poisson’s equation: 
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The charge density is defined by the doping concentrations: 
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So that: 
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In those steps we’re assuming that the depletion region is restricted between 𝑥𝑝 and 𝑥𝑛. Out of 

this assumption it follows that outside the depletion region there is no field. 

𝐸(−𝑥𝑝) = 𝐸(𝑥𝑛) = 0 
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Another restriction is that the electrical field must be continuous, everywhere. This leads to the 

following charge balance condition: 

𝑁𝐴𝑥𝑝 = 𝑁𝐷𝑥𝑛 

This means nothing else as that the charge amount on the positive side is the same as on the 

negative side. The last step is to derive the voltage: 

𝑉(𝑥) = −∫𝐸(𝑥)𝑑𝑥 =
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We are allowed to define: 

𝑉(−𝑥𝑝) = 0 ⇒ 𝐶3 =
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𝐶4 can be found by  

𝑉𝑛(𝑥 = 0) = 𝑉𝑝(𝑥 = 0) ⇒ 𝐶4 =
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The end result is: 

𝑉(𝑥) = −∫𝐸(𝑥)𝑑𝑥 =

{
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Voltage across the pn-junction corresponds to the Fermi-Level difference of both materials: 
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For 𝑁𝐷𝑥𝑛 = 𝑁𝐴𝑥𝑝 it follows: 
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This can be reexpressed to: 
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2. Rate equation formalism 

Decay of the excited state: 

𝑑𝑛𝑒
𝑑𝑡

= −(𝑘1 + 𝑘2)𝑛𝑒 

Decay of charge transfer state: 

𝑑𝑛𝐶𝑇
𝑑𝑡

= 𝑘2𝑛𝑒 − (𝑘3 + 𝑘4)𝑛𝐶𝑇 

3. Excitonic diffusion length 

a) HOMO and LUMO level: 

 
b) Diffusion length 

 
The important length scale is the “thickness” of the hole acceptor or electron acceptor 

channels. If the produced exciton needs to travel a longer time then his life time to the 

phase separation surface it will recombine and won’t contribute to the current. To find an 

upper threshold for the lengthscale one needs to calculate the diffusion length: 

𝐿 = √𝐷𝜏 

= √2 ⋅ 10−3
𝑐𝑚2

𝑠
⋅ 10−9𝑠 

≈ 14.1 ⋅ 𝑛𝑚 



c) Charge extraction rate 

The time for traveling through the bulk heterojunction is: 

𝑡 =
𝑑

𝑣
, 𝑣 = 𝜇𝐸 

𝑡 =
𝑑2

𝜇𝑉
= 2𝜇𝑠 =

1

𝑘
 

k is the rate with which charge carriers are effectively contributing to the current.  

d) Langevin Recombination 

The Langevin recombination describes the recombination rate under the assumption that a 

charge carrier gets attracted by a charge carrier with the opposite sign. This can be describe 

by the drift current: 

𝑗 = 𝑞𝑛𝜇𝐸 
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Now we integrate over the area surrounding the charge carrier: 
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For a certain charge carrier density there is an equilibrium state between recombination and 

charge extraction: 

𝛽𝑛2 = 𝑘𝑛 

𝑛 =
𝑘

𝛽
 

e) Quantum efficiency 

Now we can formulate a model in which everything can be taken into account. Let us 

assume that the charge generation rate is constant: 

 

𝑑𝑛

𝑑𝑡
= 𝐺0 − 𝛽𝑛

2 − 𝑘𝑛 

In the steady-state case the decaying rates are in balance with the generating rate 

0 = −𝛽𝑛2 − 𝑘𝑛 + 𝐺0 

This is the case for a certain density: 

𝑛1/2 = −
𝑘
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−
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Quantum efficiency: 

𝐸𝑄𝐸 =
𝑘

𝛽𝑛
 


